Non-identical Parallel Machine Scheduling with Fuzzy Processing times Using Robust Genetic Algorithm and Simulation
نویسندگان
چکیده
This paper addresses non-identical parallel machine scheduling problem with fuzzy processing times (FPMSP). A robust genetic algorithm (GA) approach embedded in a simulation model to minimize maximum completion time (makespan) is proposed. The results are compared with those obtained by using LPT rule, known as the most appropriate dispatching rule for such problems. This application illustrates the need for efficient and effective heuristics to solve FPMSPs. The proposed GA approach yields good results and reaches them fast and several times in one run. Moreover, due to its advantage of being a search algorithm, it can explore alternative schedules providing the same results. Thanks to the simulation model, several robustness tests are conducted using different random number sets and it has been shown that the proposed approach is robust.
منابع مشابه
A New ILP Model for Identical Parallel-Machine Scheduling with Family Setup Times Minimizing the Total Weighted Flow Time by a Genetic Algorithm
This paper presents a novel, integer-linear programming (ILP) model for an identical parallel-machine scheduling problem with family setup times that minimizes the total weighted flow time (TWFT). Some researchers have addressed parallel-machine scheduling problems in the literature over the last three decades. However, the existing studies have been limited to the research of independent jobs,...
متن کاملA New Hybrid Meta-Heuristics Approach to Solve the Parallel Machine Scheduling Problem Considering Human Resiliency Engineering
This paper proposes a mixed integer programming model to solve a non-identical parallel machine (NIPM) scheduling with sequence-dependent set-up times and human resiliency engineering. The presented mathematical model is formulated to consider human factors including Learning, Teamwork and Awareness. Moreover, processing time of jobs are assumed to be non-deterministic and dependent to their st...
متن کاملDesign of a Hybrid Genetic Algorithm for Parallel Machines Scheduling to Minimize Job Tardiness and Machine Deteriorating Costs with Deteriorating Jobs in a Batched Delivery System
This paper studies the parallel machine scheduling problem subject to machine and job deterioration in a batched delivery system. By the machine deterioration effect, we mean that each machine deteriorates over time, at a different rate. Moreover, job processing times are increasing functions of their starting times and follow a simple linear deterioration. The objective functions are minimizin...
متن کاملPareto-based Multi-criteria Evolutionary Algorithm for Parallel Machines Scheduling Problem with Sequence-dependent Setup Times
This paper addresses an unrelated multi-machine scheduling problem with sequence-dependent setup time, release date and processing set restriction to minimize the sum of weighted earliness/tardiness penalties and the sum of completion times, which is known to be NP-hard. A Mixed Integer Programming (MIP) model is proposed to formulate the considered multi-criteria problem. Also, to solve the mo...
متن کاملAn Efficient Bi-objective Genetic Algorithm for the Single Batch-Processing Machine Scheduling Problem with Sequence Dependent Family Setup Time and Non-identical Job Sizes
This paper considers the problem of minimizing make-span and maximum tardiness simultaneously for scheduling jobs under non-identical job sizes, dynamic job arrivals, incompatible job families,and sequence-dependentfamily setup time on the single batch- processor, where split size of jobs is allowed between batches. At first, a new Mixed Integer Linear Programming (MILP) model is proposed for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011